In this paper, we deal with a class of reflected backward stochastic differential equations (RBSDEs) corresponding to the subdifferential operator of a lower semi-continuous convex function, driven by Teugels martingales associated with a Lévy process. We show the existence and uniqueness of the solution for RBSDEs by means of the penalization method. As an application, we give a probabilistic interpretation for the solutions of a class of partial differential-integral inclusions.