We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tinnitus is a disturbing symptom and is often the main reason for otology referral. It is usually associated with hearing loss of varying aetiology, and is thought to begin in the cochlea, with later abnormal central activity. We hypothesise that tinnitus without hearing loss may be caused by central and subcortical abnormalities and altered outer hair cell function.
Aim:
To compare the auditory brainstem responses, middle latency responses and otoacoustic emissions in normal-hearing individuals with and without tinnitus.
Methodology:
The audiological test results of 25 normal hearing subjects with tinnitus (age 18–45 years) were determined, and compared with those of a control group.
Results:
A statistically significant difference was found between study group tinnitus ears vs control group ears, as regards wave I latency prolongation, shortening of wave V and absolute I–III and I–V interpeak latency, enlargement of wave Na and Pa amplitude, and distortion product and transient evoked otoacoustic emission signal-to-noise ratios. There was no statistically significant difference between unilateral vs bilateral tinnitus ears.
Conclusion:
The pathogenesis and optimum management of tinnitus are still unclear. It often occurs with primary ear disease, usually associated with hearing loss, but may occur in patients with normal hearing. Observed changes in auditory brainstem and middle latency responses indicate central auditory alterations. Tinnitus involves both peripheral and central activity, and complete audiological and neurophysiological investigation is required. Management should be based on both audiological and neurophysiological findings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.