This paper analyses lumped-parameter dynamics of a pair of robot fingers with soft and deformable tips pinching a rigid object under the
effect of a gravity force. The dynamics of the system in which area contacts between the finger-tips and the surfaces of the object arise are compared with those of a pair of rigid robot fingers with rigid contacts with an object, with or without effect of the gravity. It is then shown that there exists a sensory feedback from measurement of finger joint angles and the rotational angle of the object to command inputs to joint actuators, and this feedback connection from sensing to action realizes secure grasping of the object in a dynamic sense and regulation of the object posture. It is further shown that there are various types of other feedback connections from sensing to action, which can be used in combination of feedback signals for stable grasping and posture control of the object for realizing sophisticated object manipulation.