We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When planning severe acute malnutrition (SAM) treatment services, estimates of the number of children requiring treatment are needed. Prevalence surveys, used with population estimates, can directly estimate the number of prevalent cases but not the number of subsequent incident cases. Health managers often use a prevalence-to-incidence conversion factor (J) derived from two African cohort studies to estimate incidence and add the expected number of incident cases to prevalent cases to estimate expected SAM caseload for a given period. The present study aimed to estimate J empirically in different contexts.
Design
Observational study, with J estimated by correlating expected numbers of children to be treated, based on prevalence surveys, population estimates and assumed coverage, with the observed numbers of SAM patients treated.
Setting
Survey and programme data from six African and Asian countries.
Subjects
Twenty-four data sets including prevalence surveys and programme admissions data for 5 months following the survey.
Results
A statistically significant relationship between the number of SAM cases admitted to SAM treatment services and the estimated burden of SAM from prevalence surveys was found. Estimate for the slope (intercept forced to be zero) was 2·17 (95 % CI 1·33, 3·79). Estimates for the prevalence-to-incidence conversion factor J varied from 2·81 to 11·21, assuming programme coverage of 100 % and 38 %, respectively.
Conclusions
Estimation of expected caseload from prevalence may require revision of the currently used prevalence-to-incidence conversion factor J of 1·6. Appropriate values for J may vary between different locations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.