It is known [9] that geometric or exponential decay of a Markov chain is preserved under derivation (as defined by Cohen [2]). In this paper we consider the inverse problem, i.e., does a derived Markov chain with a geometrical or exponential decay necessarily arise from a Markov chain having the same property. For a large class of Markov chains (including time reversible chains) a complete solution is found. The method used in this paper proved accurate for obtaining exact results on the value of the decay parameter. An example extending results of Miller [8] and Teugels [9] illustrates the procedure.