In this paper we derive the probability distributions of the number of molecules and of the lifetime of a molecule in a stochastic rth-order system by direct evaluation of probabilities, avoiding the use of differential-difference equations. Maximum likelihood estimation of the rate constant is based on an observation of the level of the system at time t > 0. We find the asymptotic solution of the likelihood equation for a large initial number of molecules. By comparison with the numerical solution of the likelihood equation, the asymptotic estimator is shown to be a satisfactory approximation for second order reactions which are far from completion.