A single-type general branching population develops by individuals reproducing according to i.i.d. point processes on R+, interpreted as the individuals' ages. Such a population can be measured or counted in many different ways: those born, those alive or in some sub-phase of life, for example. Special choices of reproduction point process and counting yield the classical Galton–Watson or Bellman–Harris process. This reasonably self-contained survey paper discusses the exponential growth of such populations, in the supercritical case, and the asymptotic stability of composition according to very general ways of counting. The outcome is a strict definition of a stable population in exponential growth, as a probability space, a margin of which is the well-known stable age distribution.