Subcutaneous melatonin implants were administered to castrated hand-reared male red deer (Cervus elaphus) during a 63 d period in spring, after which effects on voluntary feed intake (VFI), rumen pool size, rumen capacity (i.e. volume) and heart rate were measured on four occasions, evenly spread over a 12-month period, with the deer individually fed indoors on a diet of lucerne (Medicago sativa) chaff. Blood samples for hormone determinations were taken at intervals throughout the study. Day-time plasma melatonin concentration was approximately 5 pg/ml in control animals, whereas during melatonin administration it increased to 60–150 pg/ml and declined to 30 pg/ml by 142 d after the last implantation. Melatonin administration markedly depressed plasma prolactin concentration during the period of implantation, but thereafter plasma prolactin concentration rose in the treated animals during autumn and winter, whilst it declined in control animals over this period. VFI, rumen pool size and heart rate in control animals attained highest values in summer and lowest values in winter, showing a pronounced seasonal cycle. Melatonin administration depressed all these values in late spring and summer and increased all the values in autumn and winter, relative to control animals, and appeared to move the cycles by approximately 6 months. Melatonin-treated animals showed maximum values for all these measurements during winter. The castrated male deer showed little seasonal change in live weight, which was not affected by melatonin administration. The findings support the view that melatonin probably mediates the effect of daylength on digestive function in red deer. Rumen capacity remained relatively constant throughout the year, but rumen pool size as a proportion of rumen capacity increased with increasing VFI.