The hydrogeology of the Roer Valley Rift System is strongly influenced by the hydraulic properties of faults. The hydrogeological impact of faults is illustrated by examples from the SE Netherlands and the adjacent lignite mining areas within the Roer Valley Rift System, near Bonn in Germany. Hydraulic head discontinuities over the main faults in the latter area can be up to tens of meters as a result of extremely large groundwater extractions in combination with the relatively low conductivity of the main faults. Within the Netherlands, outside the mining areas, such large groundwater extractions do not take place, and groundwater fluxes are smaller. In this situation natural hydraulic head differences over the main faults are limited to several meters. Hydraulic head profiles over faults provide a first estimate of fault hydraulic properties that can be quantified using simple analytical solutions. The impact of faults on near surface processes is reflected in vegetation patterns and the structure of drainage networks, aquifer structure and hydraulic head patterns. Faults can thus be of great influence on transport processes in the subsurface as well as on water-related phenomena at the surface, and should accordingly be taken into consideration in studies related to water-management, contamination and environmental impact. Faults that have an enhanced vertical permeability are difficult to detect when horizontal groundwater flow is studied, which is probably the main reason why they are rarely described. Though, these faults may form important preferential paths to vertical groundwater flow.