There are four types of horizontal cell in the goldfish retina, three cone- and one rod-type. The neurotransmitter of only one type, the H1 (cone) horizontal cell, has been identified as GABA. 3H-adenosine uptake was examined as a possible marker for the other classes of horizontal cell. Isolated goldfish retinae were incubated in 3H-adenosine (10–40 μCi) in HEPES-buffered saline for 30 min, then fixed, embedded in plastic, and processed for light-microscopic autoradiography (ARG). For double-label immuno/ARG studies, l-μm-thick sections were processed for GABA postembed immunocytochemistry, then for ARG. 3H-adenosine uptake was localized to cone photoreceptors, presumed precursor cells in the proximal outer nuclear layer, and to a single, continuous row of horizontal cell bodies in the inner nuclear layer. No uptake was localized to the region of horizontal cell axon terminals. 3H-adenosine uptake did not colocalize with GABA-IR in H1 horizontal cells, but it did colocalize with adenosine deaminase immunoreactivity. It is concluded that 3H-adenosine uptake selectively labels rod horizontal cells in the goldfish retina based on position and staining pattern, which are similar to rod horizontal cells stained by Golgi or HRP injection methods. The use of 3H-adenosine uptake may provide a useful tool to study other properties of rod horizontal cells (i.e. development) as well as provide clues as to the transmitter used by these interneurons.