In this paper, we propose a Static Condensation Reduced Basis Element (SCRBE) approach for the Reynolds Lubrication Equation (RLE). The SCRBE method is a computational tool that allows to efficiently analyze parametrized structures which can be decomposed into a large number of similar components. Here, we extend the methodology to allow for a more general domain decomposition, a typical example being a checkerboard-pattern assembled from similar components. To this end, we extend the formulation and associated a posteriori error bound procedure. Our motivation comes from the analysis of the pressure distribution in plain journal bearings governed by the RLE. However, the SCRBE approach presented is not limited to bearings and the RLE, but directly extends to other component-based systems. We show numerical results for plain bearings to demonstrate the validity of the proposed approach.