This study aimed to characterise lean and obese phenotypes according to diet and body composition, and to compare fasting and postprandial appetite and metabolic profiles following a high-fat test meal. A total of ten lean (BMI<25 kg/m2) high-fat (LHF), ten lean low-fat (LLF; >40 and <30 % energy from fat) and ten obese (BMI>30 kg/m2) high-fat consumers (OHF; >40 % energy from fat) were recruited. Before and following the test meal (4727 kJ (1130 kcal), 77 % fat, 20 % carbohydrate (CHO) and 3 % protein), fasting plasma glucose, insulin, leptin, ghrelin, peptide YY (PYY), RER, RMR and subjective appetite ratings (AR) were measured for 6 h. Thereafter, subjects consumed a self-selected portion of a standardised post-test meal (40 % fat, 45 % CHO and 15 % protein) and reported AR. Fasting (P=0·01) and postprandial (P<0·001) fat oxidation was significantly higher in LHF than in LLF but was not different between LHF and OHF. Although similar between the lean groups, fasting and postprandial energy expenditures were significantly higher in OHF compared with LHF (P<0·01). Despite similar AR across groups, LLF consumed a relatively greater quantity of the post-test meal than did LHF (7·87 (sd 2·96) v. 7·23 (sd 2·67) g/kg, P=0·013). The lean groups showed appropriate changes in plasma ghrelin and PYY following the test meal, whereas the OHF group showed a blunted response. In conclusion, the LHF phenotype had a greater capacity for fat oxidation, which may be protective against weight gain. OHF individuals had a blunted appetite hormone response to the high-fat test meal, which may subsequently increase energy intake, driving further weight gain.