A general result for queueing systems with retrials is presented. This result relates the expected total number of retrials conducted by an arbitrary customer to the expected total number of retrials that take place during an arbitrary service time. This result is used in the analysis of a special system where two types of customer arrive in an independent Poisson fashion at a single-server service station with no waiting room. The service times of the two types of customer have independent general distributions with finite second moments. When the incoming customer finds the server busy he immediately leaves and tries his luck again after an exponential amount of time. The retrial rates are different for different types of customers. Expressions are derived for the expected number of retrial customers of each type.