Loess is a collapsible soil; when it collapses, it can cause significant damage to structures built on it. Improvement in the stability and strength performance of loess is necessary to meet engineering needs. In the present study, the effects on the physical-chemical and rheological characteristics of Ghardaïa loess of adding bentonite and lime (southern Algeria) were examined. Rheological characterization of suspensions was implemented to assess the mechanical sensitivity of the bonds and the structural inter-particle resistance to both the chemical effect and mechanical impact. By analyzing the viscosity results and the evolution of the rheological parameters, the improvements needed in terms of the resistance characteristics of the loess-bentonite and loess-lime mixtures were evaluated and confirmed. The loess physical sensitivity was examined through grain-size distribution and plasticity properties. The pH and electrical conductivity of the mixtures were also used to explore structural modifications. Physical test results showed that introduction of the additives changed the loess texture and improved the plasticity of mixtures. Chemical examination (via change in pH and electrical conductivity) revealed the structural changes in the mixtures studied. Rheological test results showed that increasing concentrations of bentonite and lime improves the mechanical strength and increased the yield stress, consistency, and viscosity of the suspensions. The creation of cement interactions between mixture particles explained the increase in those parameters. Hydration, agglomeration, and inter-particle flocculation induced by the additives promoted these interactions. The experimental results led to the conclusion that bentonite and lime may represent an effective means to improve the performance in terms of preventing loess collapse and to increase its resistance to mechanical impact. The results presented in the present study may provide a geotechnical and rheological working database for the control and treatment of loess collapse and landslides in the region under study. Technical data related to loess may, therefore, be beneficial in terms of civil engineering, public works, hydraulics, and the manufacture of construction materials.