To explore relationships between spatial distributions of northern shrimp Pandalus eous and environmental factors along the coastline of Honshu Island in the Sea of Japan, we built delta-type two-step generalized additive models (delta-GAM) based on bottom trawl surveys conducted in 2013–2022. The models provide the first quantitative analysis of the species’ habitat, showing that its distribution is associated with bottom sediment type, depth, slope and topographic position index (TPI) alongside the effects of year and region. From the delta-GAM response plots, species habitat preferences in the Sea of Japan were estimated as follows: seafloor deeper than 283 m; muddy rather than sandy bottoms; gently sloped to flat bottoms (<0.8° in slope); and valleys rather than ridges (TPI < 0.9). These results were reviewed in detail along with previously reported distribution records of northern shrimp. Standardized density (s-density) per fishing grid cell (10′ square latitude–longitude mesh) estimated from the delta-GAM results indicated that this species is widely distributed on the continental slope along the coast of Honshu Island. To test plausibility of the s-density analysis, we compared s-density per fishing grid cell with nominal CPUE (kg per haul) per fishing grid cell based on official logbook data from large offshore trawl fisheries. The two were generally positively correlated by year, and the delta-GAM results were assumed to be fairly robust. Finally, potential fishing grounds were explored based on the delta-GAM results.