We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate discrepancies in dose calculation algorithms used for lung stereotactic body radiotherapy (SBRT) plans.
Methods and materials
In total, 30 patients lung SBRT treatment plans, initially generated using BrainLab Pencil Beam (BL_PB) algorithm for 10 Gy×5 Fractions to the planning target volume (PTV) were included in the study. These plans were recalculated using BrainLab Monte Carlo (BL_MC), Eclipse AAA (EC_AAA), Eclipse Acuros XB (EC_AXB) and ADAC Pinnacle CCC (AP_CCC) algorithms. Dose volume histograms of PTV were used to calculate dosimetric and radiobiological quality indices, and equivalent dose to 2 Gy per fraction using linear-quadratic-linear model. The BL_MC algorithm is considered gold standard tool to compare PTV parameters and quality indices to investigate dose calculation discrepancies of abovementioned plans.
Results
BL_PB overestimates doses that may be due to inability of the algorithm to properly account for electron scattering and transport in inhomogeneous medium. Compared with BL_MCNO plans, the EC_AAA and EC_AXB yield lower homogeneity indices and overestimate the dose in the penumbra region, whereas AP_CCC plans were comparable for small PTV (≈8 cc) and had significant difference for large PTV.
Conclusion
BL_PB algorithm overestimates PTV doses than BL_MC calculated doses. The EC_AAA, EC_AXB and AP_CCC algorithms calculate doses within acceptable limits of radiotherapy dose delivery recommendations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.