In best linear prediction (BLP), a true test score is predicted by observed item scores and by ancillary test data. If the use of BLP rather than a more direct estimate of a true score has disparate impact for different demographic groups, then a fairness issue arises. To improve population invariance but to preserve much of the efficiency of BLP, a modified approach, penalized best linear prediction, is proposed that weights both mean square error of prediction and a quadratic measure of subgroup biases. The proposed methodology is applied to three high-stakes writing assessments.