We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study the Oort conjecture concerning the non-existence of Shimura subvarieties contained generically in the Torelli locus in the Siegel modular variety ${\mathcal{A}}_{g}$. Using the poly-stability of Higgs bundles on curves and the slope inequality of Xiao on fibered surfaces, we show that a Shimura curve $C$ is not contained generically in the Torelli locus if its canonical Higgs bundle contains a unitary Higgs subbundle of rank at least $(4g+2)/5$. From this we prove that a Shimura subvariety of $\mathbf{SU}(n,1)$ type is not contained generically in the Torelli locus when a numerical inequality holds, which involves the genus $g$, the dimension $n+1$, the degree $2d$ of CM field of the Hermitian space, and the type of the symplectic representation defining the Shimura subdatum. A similar result holds for Shimura subvarieties of $\mathbf{SO}(n,2)$ type, defined by spin groups associated to quadratic spaces over a totally real number field of degree at least $6$ subject to some natural constraints of signatures.
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.