Long-term sediment and ground-penetrating radar data from Davis Pond, a small lake near the Hudson River valley, reveal past droughts in a historically humid region that presently supplies water to millions of people in and around New York City. A minimum of eleven sandy paleoshoreline deposits in the lake date from 13.4 to 0.6 cal ka BP. The deposits span 1500 to 200 yr between bracketing radiocarbon ages, and intrude into lacustrine silts up to 9.0 m below the modern lake surface in a transect of six sediment cores. Three low stands, ca. 13.4–10.9, 9.2 and 8.2 cal ka BP indicate low regional moisture balance when low temperatures affected the North Atlantic region. Consistent with insolation trends, water levels rose from ca. 8.0 cal ka BP to present, but five low stands interrupted the rise and are likely associated with ocean–atmosphere interactions. Similar to evidence from other studies, the data from Davis Pond indicate repeated multi-century periods of prolonged or frequent droughts super-imposed on long-term regional trends toward high water levels. The patterns indicate that water supplies in this heavily populated region have continuously varied at multiple time scales and confirm that humid regions such as the northeastern United States are more prone to severe drought than historically expected.