This paper presents a Chebyshev Pseudospectral (PS) method for solving the motion planning problem of nonholonomic mobile robots with kinematic and dynamic constraints. The state and control variables are expanded in the Chebyshev polynomial of order N, and Chebyshev–Gauss–Lobatto (CGL) nodes are provided for approximating the system dynamics, boundary conditions, and performance index. For the lack of enough nodes nearby the obstacles, the interpolation of trajectory may violate the obstacles and the multiple-interval strategy is proposed to deal with the violation. Numerical examples demonstrate that multiple-interval strategy yields more accurate results than the single-interval Chebyshev PS method.