We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Even healthy older people undergo some cognitive decline with real-world consequences, although the neural plasticity persisting in older brains indicates substrates for interventions. Yet there is no consensus on cognitive interventions. The literature on cognitive training is equivocal regarding the factors important in far transfer of training to untrained abilities. That there have been few hypotheses on mechanisms underlying far transfer of training is an obstacle to the design of cognitive interventions. We evaluate two hypotheses: (1) updating and (2) distraction suppression. (1) The updating hypothesis argues that updating and monitoring of working memory representations is an important mechanism of far transfer of training. Two meta-analyses of n-back training tasks found small, but significant, effect sizes in favor of transfer to fluid intelligence (Gf) in young and older people. However, direct tests of the updating hypothesis supported only narrow transfer effects. (2) The distraction suppression hypothesis argues that suppression of irrelevant events has a central role in cognitive processing. Perceptual discrimination training improved distraction suppression, enhanced neural activity associated with task-relevant targets, suppressed neural activity associated with task-irrelevant distractions, improved brain-stem evoked potential firing patterns and “speech-in-noise” perception, transferred to working memory, and reduced risk of dementia in a large-scale study. The evidence supports the conclusion that the strongest far transfer of cognitive training would be achieved by combined updating and distraction suppression training. Even small effect sizes of transfer to Gf can be beneficial to older people, consistent with the growing evidence for the role of lifestyle factors, including educational attainment, in risk of Alzheimer’s disease.
One hypothesis proposed to underlie formal thought disorder (FTD), the incoherent speech is seen in some patients with schizophrenia, is that it reflects impairment in frontal/executive function. While this proposal has received support in neuropsychological studies, it has been relatively little tested using functional imaging. This study aimed to examine brain activations associated with FTD, and its two main factor-analytically derived subsyndromes, during the performance of a working memory task.
Methods
Seventy patients with schizophrenia showing a full range of FTD scores and 70 matched healthy controls underwent fMRI during the performance of the 2-back version of the n-back task. Whole-brain corrected, voxel-based correlations with FTD scores were examined in the patient group.
Results
During 2-back performance the patients showed clusters of significant inverse correlation with FTD scores in the inferior frontal cortex and dorsolateral prefrontal cortex bilaterally, the left temporal cortex and subcortically in the basal ganglia and thalamus. Further analysis revealed that these correlations reflected an association only with ‘alogia’ (poverty of speech, poverty of content of speech and perseveration) and not with the ‘fluent disorganization’ component of FTD.
Conclusions
This study provides functional imaging support for the view that FTD in schizophrenia may involve impaired executive/frontal function. However, the relationship appears to be exclusively with alogia and not with the variables contributing to fluent disorganization.
Patterns of abnormal neural activation have been observed during working memory tasks in bipolar I depression, yet the neural changes associated with bipolar II depression have yet to be explored.
Method.
An n-back working memory task was administered during a 3T functional magnetic resonance imaging scan in age- and gender-matched groups of 19 unmedicated, bipolar II depressed subjects and 19 healthy comparison subjects. Whole-brain and region-of-interest analyses were performed to determine regions of differential activation across memory-load conditions (0-, 1- and 2-back).
Results.
Accuracy for all subjects decreased with higher memory load, but there was no significant group × memory load interaction. Random-effects analyses of memory load indicated that subjects with bipolar II depression exhibited significantly less activation than healthy subjects in left hemispheric regions of the middle frontal gyrus [Brodmann area (BA) 11], superior frontal gyrus (BA 10), inferior parietal lobule (BA 40), middle temporal gyrus (BA 39) and bilateral occipital regions. There was no evidence of differential activation related to increasing memory load in the dorsolateral prefrontal or anterior cingulate cortex.
Conclusions.
Bipolar II depression is associated with hypoactivation of the left medio-frontal and parietal cortex during working memory performance. Our findings suggest that bipolar II depression is associated with disruption of the fronto-parietal circuit that is engaged in working memory tasks, which is a finding reported across bipolar subtypes and mood states.
Anxiety often co-occurs with major depressive disorder (MDD). This preliminary study sought to ascertain the extent to which anxious depression drives group neurobiological differences between patients with MDD and healthy volunteers (HVs).
Methods
Magnetoencephalography beta-band frequency was used to compare differences in brain response during the N-back working memory task between 30 medication-free patients with treatment-resistant MDD (anxious depression=18; nonanxious depression=12) and 28 HVs.
Results
Compared to HVs, patients with anxious depression had significantly reduced desynchronisation (less activation) in the left precuneus, right cuneus, and left insula extending into the inferior and middle frontal cortex during the 2-back condition compared with the 1-back condition of the N-back working memory task – indicating less activation of these neural networks in patients with anxious depression during the condition with the highest level of task demands. No other significant group differences were found during the working memory conditions.
Conclusion
This preliminary study suggests that a subset of patients – those with anxious depression – may be driving observed group differences between patients with MDD and HVs. Further neurobiological studies and replication experiments are necessary to determine the extent to which this subgroup has preferentially influenced our understanding of the underlying neurobiology of depression.
A prevailing belief is that opioids tend not to impair cognitive performance in opioid-dependent users. However, the impact of heroin abuse on verbal memory, especially on working memory, is not well studied and the results available are inconsistent.
Objective:
This study was carried out to test the hypothesis that abstinent heroin abusers have intact working memory capacity.
Methods:
N-back task and backward digit span task were used to measure the verbal working memory capacity in 28 abstinent heroin abusers and 25 controls matched for age, education level and gender. Forward digit span task was used as a control task to measure short-term memory capacity.
Results:
Compared with the control subjects, heroin abusers showed normal backward/forward digit spans but significant performance impairment in the n-back task.
Conclusion:
Abstinent heroin abusers have intact short-term memory capacity but impaired verbal working memory capacity.
Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder.
Method
Thirty-two patients meeting Research Diagnostic Criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups.
Results
Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant.
Conclusions
Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.