The myopic strategy is one of the most important strategies when studying bandit problems. In 2018, Nouiehed and Ross put forward a conjecture about Feldman’s bandit problem (J. Appl. Prob. (2018) 55, 318–324). They proposed that for Bernoulli two-armed bandit problems, the myopic strategy stochastically maximizes the number of wins. In this paper we consider the two-armed bandit problem with more general distributions and utility functions. We confirm this conjecture by proving a stronger result: if the agent playing the bandit has a general utility function, the myopic strategy is still optimal if and only if this utility function satisfies reasonable conditions.