Our aim is to develop a smartphone-based life-logging system. Human activity recognition (HAR) is one of the core techniques to realize it. Recent studies reported the effectiveness of feed-forward neural network (FF-NN) and recurrent neural network (RNN) as a classifier for HAR task. However, there are still unresolved problems in those studies: (1) a life-logging system using only a smartphone for recording device has not been developed, (2) only indoor activities have been utilized for evaluation, (3) insufficient investigations/evaluations of RNN. In this study, we address these unresolved problems as follows: (1) we build a prototype system for life-logging and conduct data recording experiment on this system to include both indoor and outdoor activities. The experimental results of HAR on this new dataset showed that RNN-based classifier was still effective. (2) From the results of a HAR experiment, it was demonstrated that a multi-layered Simple Recurrent Unit with a non-linear transform at the bottom layer and a highway-connection was the most effective. (3) We could grasp the reason for the improvement of RNN from FF-NN by observing the posterior probabilities over test data.