The 1800 m thick preserved remnant of the Tertiary lava succession of Mull and Morvern consists of three basic mantle-derived magma types, with compositions varying from tholeiitic to mildly alkalic, and from picritic basalts to trachytes. This results in a similarly wide range in mineral compositions. Contrary to the suggestions of previous workers the mineral chemistry of the lava succession (in conjunction with published major and trace element chemistry) is strongly supportive of a fractional crystallisation origin for the more evolved lavas.
Resorped and regrown (with more basic material) plagioclase phenocrysts found in the more-evolved are indicative of magma mixing processes involving replenishment of an evolving magma chamber with more-basic magma. Lavas containing 15–20 vol.% plagioclase phenocrysts probably represent eruptions from the top of a magma chamber where flotation cumulates of plagioclase had developed. Fragmental phenocrysts found in some highly plagioclase phyric lavas (from near the top of the
preserved lava succession) suggest that the eruption of lavas may have been explosive.