Motion transparency occurs when multiple object velocities are present within a local region of retinotopic space. Transparent signals can carry information useful in the segmentation of moving objects and in the extraction of three-dimensional structure from relative motion cues. However, the physiological substrate underlying the detection of motion transparency is poorly understood. Direction tuned neurons in area MT are suppressed by transparent stimuli, suggesting that other motion sensitive areas may be needed to represent this signal robustly. Recent neuroimaging evidence implicated two such areas in the macaque superior temporal sulcus. We studied one of these, FST, with electrophysiological methods and found that a large fraction of the neurons responded well to two opposite directions of motion and to transparent stimuli containing those same directions. A linear combination of MT-like responses qualitatively reproduces this behavior and predicts that FST neurons can be tuned for transparent motion containing specific direction and depth components. We suggest that FST plays a role in motion segmentation based on transparent signals.