The linear micromorphic electroelastic theory is proposed to solve bending problems of piezoelectric micro-beam in this paper. The basic governing equations with the boundary conditions are derived through the variational principle. Both the cantilever piezoelectric micro-beam subjected to a concentrated load at the free end and the simply supported micro-beam subjected to a distributed load are analyzed. It is found that the predictions from the micromorphic electroelastic theory are remarkably different from those from the classical theory when the micro-beam thickness is approximate or equal to the characteristic length scale parameter, but their difference is slight when the micro-beam thickness is much larger than the characteristic length scale parameter. As a result, it is concluded that the size effect is significant when the micro-beam thickness is comparable to the characteristic length scale parameter.