The aim of this article was to investigate the mechanism of appetite suppression induced by high-fat diets (HFD) in blunt snout bream (Megalobrama amblycephala). Fish (average initial weight 40·0 (sem 0·35) g) were fed diets with two fat levels (6 and 11 %) with four replicates. HFD feeding for 30 d could significantly increase the weight gain rate, but feeding for 60 d cannot. Food intake of M. amblycephala began to decline significantly in fish fed the HFD for 48 d. HFD feeding for 60 d significantly reduced the expression of neuropeptide Y and elevated the expression of cocaine- and amphetamine-regulated transcript (CART), actions both in favour of suppression of appetite. The activation of fatty acid sensing was partly responsible for the weakened appetite. In addition, inflammatory factors induced by the HFD may be involved in the regulation of appetite by increasing the secretion of leptin and then activating the mammalian target of rapamycin (mTOR). Lipopolysaccharide (LPS, 2·0 mg/kg of fish weight) was administered to induce inflammation, and sampling was performed after 3, 6, 9, 12, 18, 24 and 48 h of LPS injection. Within 6–24 h of LPS injection, the food intake and appetite of M. amblycephala decreased significantly, whereas the mRNA expression of leptin and mTOR increased significantly. Our results indicate that inflammatory cytokines may be the cause of appetite suppression in M. amblycephala fed a HFD.