We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this appendix, we give a short introduction to differential forms on infinite-dimensional manifolds. The main difference between the finite dimensional (or Banach) and our setting, is that it is in general impossible to interprete differential forms as (smooth) sections into certain bundles of linear forms. The reason for this is again that the topology on spaces of linear forms breaks down beyond the Banach setting. Even worse, the many equivalent ways to define differential forms in finite dimensions become inequivalent in the infinite-dimensional setting. Most notably, there is no useful way to describe differential forms as a sum of differential forms coming from a local coordinate system. We begin with the definition of a differential form. This definition is geared towards avoiding any reference to topologies on spaces of linear mappings. Then, we shall discuss differential forms on a Lie group and in particular the Maurer–Cartan form.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.