In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method.A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method.Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous diffusivity, we introduce a non-standard test space in $H_0^1$ (Ω) and prove its density. Thorough assessment on a set of anisotropic heterogeneous problems as well as a comparison with classical multi-point Finite Volume methods is provided.