Stationary processes which are defined on the points of a square lattice and are Markovian in various senses are considered. It is shown that a certain assumption of linearity of regression forces the spectral distribution to be of a certain explicit form, and that given this form Gaussian processes of this kind are easily constructed. Certain non-Gaussian processes satisfying the various Markovian properties are also constructed and the difference from nearest-neighbour systems emphasized. It is conjectured, but not proved, that the assumption of linearity of regression also implies Gaussianity.