We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The central theme of this paper is the holomorphic spectral theory of the canonical Laplace operator of the complement of the “complexified unit circle” $\{(z,w) \in \widehat {{\mathbb C}}^2 \colon z \cdot w = 1\}$. We start by singling out a distinguished set of holomorphic eigenfunctions on the bidisk in terms of hypergeometric ${}_2F_1$ functions and prove that they provide a spectral decomposition of every holomorphic eigenfunction on the bidisk. As a second step, we identify the maximal domains of definition of these eigenfunctions and show that these maximal domains naturally determine the fine structure of the eigenspaces. Our main result gives an intrinsic classification of all closed Möbius invariant subspaces of eigenspaces of the canonical Laplacian of $\Omega $. Generalizing foundational prior work of Helgason and Rudin, this provides a unifying complex analytic framework for the real-analytic eigenvalue theories of both the hyperbolic and spherical Laplace operators on the open unit disk resp. the Riemann sphere and, in particular, shows how they are interrelated with one another.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.