An explicit convolution representation for the equilibrium residual lifetime distribution of compound zero-modified geometric distributions is derived. Second-order reliability properties are seen to be essentially preserved under geometric compounding, and complement results of Brown (1990) and Cai and Kalashnikov (2000). The convolution representation is then extended to the nth-order equilibrium distribution. This higher-order convolution representation is used to evaluate the stop-loss premium and higher stop-loss moments of the compound zero-modified geometric distribution, as well as the Laplace transform of the kth moment of the time of ruin in the classical risk model.