This study relates to local field potentials and single-unit responses
in cat visual cortex elicited by contrast reversal of bar gratings that
were presented in single, double, or multiple discrete patch (es) of the
visual field. Concurrent stimulation of many patches by means of the
pseudorandom, binary m-sequence technique revealed interactions between
their respective responses. An analysis identified two distinct components
of local field potentials: a fast local component (FLC) and a slow
distributed component (SDC). The FLC is thought to be a primarily
postsynaptic response, as judged by its relatively short latency. It is
directly generated by thalamocortical volleys following retinotopic
stimulation of receptive fields of a small cluster of single cells,
combined with responses to recurrent excitation and inhibition derived
from the cells under study and immediately neighboring cells. In contrast,
the SDC is thought to be an aggregate of dendritic potentials related to
the long-range lateral connections (i.e. long-range coupling). We compared
the suppressive effects of a GABAA-receptor agonist, muscimol,
on the FLC and SDC with those of a GABAB-receptor agonist,
baclofen, and found that muscimol more strongly suppressed the FLC than
the SDC, and that the reverse was the case for baclofen. The differential
suppression of the FLC and SDC found in the present study is consistent
with the notion that intracortical electrical signals related to the FLC
terminate on the somata and proximal/basal dendrites, while those
related to the SDC terminate on distal dendrites.