We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${\mathcal{A}}$ be a unital torsion-free algebra over a unital commutative ring ${\mathcal{R}}$. To characterise Lie $n$-higher derivations on ${\mathcal{A}}$, we give an identity which enables us to transfer problems related to Lie $n$-higher derivations into the same problems concerning Lie $n$-derivations. We prove that: (1) if every Lie $n$-derivation on ${\mathcal{A}}$ is standard, then so is every Lie $n$-higher derivation on ${\mathcal{A}}$; (2) if every linear mapping Lie $n$-derivable at several points is a Lie $n$-derivation, then so is every sequence $\{d_{m}\}$ of linear mappings Lie $n$-higher derivable at these points; (3) if every linear mapping Lie $n$-derivable at several points is a sum of a derivation and a linear mapping vanishing on all $(n-1)$th commutators of these points, then every sequence $\{d_{m}\}$ of linear mappings Lie $n$-higher derivable at these points is a sum of a higher derivation and a sequence of linear mappings vanishing on all $(n-1)$th commutators of these points. We also give several applications of these results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.