The distribution of the sample quantiles of random processes is important for the pricing of some of the so-called financial ‘look-back' options. In this paper a representation of the distribution of the α-quantile of an additive renewal reward process is obtained as the sum of the supremum and the infimum of two rescaled independent copies of the process. This representation has already been proved for processes with stationary and independent increments. As an example, the distribution of the α-quantile of a randomly observed Brownian motion is obtained.