Let N(t) be a finite semi-Markov process on 𝒩 and let X(t) be the associated age process. Of interest is the counting process M(t) for transitions of the semi-Markov process from a subset G of 𝒩 to another subset B where 𝒩 = B ∪ G and B ∩ G = ∅. By studying the trivariate process Y(t) =[N(t), M(t), X(t)] in its state space, new transform results are derived. By taking M(t) as a marginal process of Y(t), the Laplace transform generating function of M(t) is then obtained. Furthermore, this result is recaptured in the context of first-passage times of the semi-Markov process, providing a simple probabilistic interpretation. The asymptotic behavior of the moments of M(t) as t → ∞ is also discussed. In particular, an asymptotic expansion for E[M(t)] and the limit for Var [M(t)]/t as t → ∞ are given explicitly.