The Kirchhoff elastic rod is one of the mathematical models of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler–Lagrange equations associated to the energy with the effect of bending and twisting. In this paper, we consider Kirchhoff elastic rods in a space form. In particular, we give the existence and uniqueness of global solutions of the initial-value problem for the Euler–Lagrange equations. This implies that an arbitrary Kirchhoff elastic rod of finite length extends to that of infinite length.