In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells (MQWs) with heavily Si-doped barriers, grown with Metal Organic Vapor Phase Epitaxy (MOVPE) at about 8000C, have been studied in detail with optical spectroscopy. Such structures are shown to be very sensitive to a near surface depletion field, and if no additional layer is grown on top of the MQW structure the optical spectra from the individual QWs are expected to be drastically different. For a sample with 3 near surface QWs and Si-doped barriers, only the QW most distant from the surface is observed in photoluminescence (PL). The strong surface depletion field is suggested to explain these results, so that the QWs closer to the surface cannot hold the photo-excited carriers. A similar effect of the strong depletion field is found in an LED structure where the MQW is positioned at the highly doped n-side of the pn-junction. The internal polarization induced electric field in the QWs is also rather strong, and incompletely screened by carriers transferred from the doped barriers. The observed PL emission for this QW is of localized exciton character, consistent with the temperature dependence of peak position and PL decay time. The excitonic lineshape of 35-40 meV in the QW PL is explained as caused by a combination of random alloy fluctuations and interface roughness; the corresponding localization potentials are also responsible for the localization of the excitons in the low temperature range (<150 K). These samples show no evidence of localization due to nanoscale In fluctuations, these commonly observed problems are concluded to be not present in our samples. A second PL feature at lower energy, observed at low temperatures, is shown to be related to an electron pocket at the interface to the underlying n-GaN buffer layer in these samples.