We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Christophe Boesch, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Roman Wittig, Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Edited in association with
Catherine Crockford, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Linda Vigilant, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Tobias Deschner, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Fabian Leendertz
Social network analysis is a widely applied tool to study the social organization of different species. Only few studies have investigated social network changes over time. A previous study of the North Group chimpanzees in Taï National Park indicated network structure changes with decreasing community size. We investigated how two natural ‘knockouts’, i.e. sudden large-scale declines in community size, affected association networks. Network dynamics following the 1992 knockout, during which eight individuals died, showed a delayed response: in the first months, association rates were lower than expected, and only after seven months did they converge to expected community-size–specific level. In contrast, network dynamics following the 1994 knockout, during which 12 individuals died, showed no deviation from expected community-size–specific levels. Thus, chimpanzee association networks can react differently to large-scale declines in community size. Differences might be related to the identity of deceased individuals and knockout amplitude. The patterns of observed changes did not support the idea that large-scale knockouts lead to strong disturbances of chimpanzee communities.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.