In this paper, we present a version of Fraïssé theory for categories of metric structures. Using this version, we show that every UHF algebra can be recognized as a Fraïssé limit of a class of C*-algebras of matrix-valued continuous functions on cubes with distinguished traces. We also give an alternative proof of the fact that the Jiang–Su algebra is the unique simple monotracial C*-algebra among all the inductive limits of prime dimension drop algebras.