We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Astronauts will encounter isolated, confined and extreme (ICE) conditions during future missions, and will have to be able to adapt. Until recently, however, few places on Earth could serve as acceptable space analogues (i.e., submarine and polar regions). The coronavirus disease-2019 (COVID-19)-related lockdowns around the globe provided a good opportunity to obtain more comprehensive datasets on the impact of prolonged isolation on human functioning in a very large sample.
Methods
Seven hundred forty-eight individuals (Belgium 442, Spain 183, Germany 50, Italy 50, US 23; Mean age ± SD: 41 ± 14 years, with an age range of 18–83 years; 66% women) filled out an online survey assessing the impact of the COVID-lockdown on psychological, exercise and general health variables a first time near the beginning of the initial lockdown (hereafter ‘T1’; 24 ± 13 days after the start of the first lockdown; i.e., 3 weeks after the start of the first lockdown) and a second time a couple of weeks thereafter (hereafter ‘T2’; 17 ± 5 days after the first online survey; i.e., 6 weeks after the start of the first lockdown).
Results
From T1 to T2 an improvement of subjective sleep quality was observed (P = 0.003), that was related to an increase in subjective sleep efficiency and a decrease in sleep latency and disturbance (P ≤ 0.013). Weekly sitting time decreased, and the weekly amount of moderate and vigorous physical activity increased from T1 to T2 (P ≤ 0.049). No differences from T1 to T2 were observed in terms of mood, loneliness and state anxiety. A lower amount of sitting time was significantly correlated with improved subjective sleep quality (r = 0.096, P = 0.035) and with an increased amount of moderate (r = −0.126, P = 0.005) and vigorous (r = −0.110, P = 0.015) physical activity.
Conclusion
Compared to 3 weeks into the first COVID-imposed lockdown, 6-weeks after the start of the first COVID-imposed lockdown, physical activity and subjective sleep scores were positively impacted. The present, large sample size study further confirms exercise as a worthwhile countermeasure to psycho-physiological deconditioning during confinement.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.