The shoaling of large-amplitude internal waves in the coastal ocean yields a consistent mechanism for both horizontal and vertical transport of material, momentum and energy. This review surveys recent numerical, field and laboratory work on the details of this transport. A particular focus is made on the two issues of how boundary-layer processes are modified during shoaling, and the development of spanwise structure, especially in the trapped cores that form during shoaling. Numerical challenges, including gaps in existing parametrizations are identified using pseudospectral simulations on the laboratory scale. A number of challenges for future work, for simulations, parametrizations and laboratory and field measurements are laid out.