We assess the ice flow of Institute Ice Stream (IIS; 81.5°S, 75°W) and the adjacent Ronne Ice Shelf using satellite images and geophysical parameters from recent continent-wide compilations. Landsat image pairs from the 1980s and 1990s are used to determine ice velocity. Peak speed is 398 ± 10 m a−1. Several mappings using images spanning an eleven-year period indicate this speed and the pattern of ice flow throughout the mapped portion of the stream is constant to within ± 20 m a−1. Combining catchment extent (141 700 km2) with surface accumulation, mass input to IIS is 25.1 ± 2 Gt a−1. Mean ice thickness across the grounding line is 1177 m. Mass flux to the Ronne Ice Shelf, determined from these values and our velocity profile, is 22.7 ± 2 Gt a−1. Topographic mapping using photoclinometry, coupled with ice thickness and ice velocity, permits an assessment of driving force versus flow speed. This indicates wide variations in basal resistance. Despite evidence of present-day near-balance and constant speed in the ice stream trunk, a recent change in outflow is implied by folding of shelf streaklines near Korff Ice Rise. This may be a result of changing shelf thickness or erosion of Doake Ice Rumples.