Starting from the theory of point processes the concept of a process with an embedded marked point process is defined. It is shown that the known formula expressing the relation between the stationary and synchronous version of a regenerative process remains valid without the assumption of independence of cycles. General formulae for stationary availability and interval reliability of complex systems with repair are also obtained. In this way generalizations of Keilson's results for Markovian systems and Ross's results for systems with separately maintained elements are presented. The formulae are applied to a two-unit parallel system with a single repair facility.