The familiar three theorems of Rényi concerning the record times in an i.i.d. sequence of random variables are extended to the record times and inter-record times of a sequence of dependent, non-identically distributed random variables defined on a finite Markov chain. These theorems are the Central Limit Theorem (C.L.T.), the Strong Law of Large Numbers (S.L.L.N.) and the Law of the Iterated Logarithm (L.I.L.). Similar results are also obtained for m-record times, inter-m-record times, and for the continuous parameter situation when observations are taken at the epochs of a Poisson process.