We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A complex quadrature charge-sharing (CS) technique is utilized to implement a discrete-time band-pass filter with a programmable bandwidth of 20–100 MHz. The BPF is a natural part of a cellular superheterodyne receiver and completely determines the receiver frequency selectivity. It operates at the full sampling rate (4×) (described in Chapter 2 of up to 5.2 GHz corresponding to the 1.2 GHz RF input frequency, thus making it free from any aliasing or replicas in its transfer function. Furthermore, the advantages of CS-BPFover other band-pass filters, such as N-path, active-RC, Gm-C, and biquad are described. A mathematical noise analysis of the CS-BPF and the comparison of simulations and calculations are presented. The entire 65 nm CMOS receiver, which does not include a front-end LNTA for test reasons, achieves a total gain of 35 dB, IRN of 1.5 nV/?Hz, out-of-band IIP3 of +10 dBm. It consumes 24 mA at 1.2 V power supply.
One of the main building blocks in a receiver is a low-pass filter (LPF) used at the baseband. This block is responsible for selecting the desired channel. In zero-IF receivers, this block is placed directly after the RF downconversion mixer. In a high-IF receiver,the LPF is required after a second downconversion from the IF to baseband. In addition to wireless communication applications, integrated LPFs are the key building blocks in various other types of applications, such as hard disk drive readchannels,videosignalprocessing,smoothingfilteringinaDAC,andantialiasingfilteringbeforea sampling system. The noise of these filters is one of the key system-level concerns. This noise can be usually traded off with the total filter capacitance and, consequently, total power and area. Therefore, for a given system-level noise budget, a filter with a lower noise coefficient reduces the area and power consumption. On the other hand, the linearity of the filter should be high enough to maintain the fidelity of the wanted signal.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.