In this paper we study persistence features of topological entropy and periodic orbit growth of Hamiltonian diffeomorphisms on surfaces with respect to Hofer's metric. We exhibit stability of these dynamical quantities in a rather strong sense for a specific family of maps studied by Polterovich and Shelukhin. A crucial ingredient comes from enhancement of lower bounds for the topological entropy and orbit growth forced by a periodic point, formulated in terms of the geometric self-intersection number and a variant of Turaev's cobracket of the free homotopy class that it induces. Those bounds are obtained within the framework of Le Calvez and Tal's forcing theory.