We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The hippocampus is not a uniform structure, but rather consists of multiple, functionally specialized subfields. Few studies have explored hippocampal subfield volume difference in the same sample of major depressive disorder (MDD) and bipolar disorder (BD) cases. We aimed to investigate the difference of hippocampal subfield volume between patents with MDD and BD and healthy controls (HCs).
Methods:
A total of 102 MDD and 55 BD patients and 135 HCs were recruited and underwent T1-weighted image. Hippocampal subfield volume was calculated by automated segmentation and volumetric procedures developed by Iglesias et al. and implemented in FreeSurfer. Volume differences between the groups were analyzed using the analysis of covariance and controlling for age, sex, and total intracranial cavity volume.
Results:
Patients with MDD had significantly reduced volumes in the bilateral cornu ammonis 1 (CA1), CA4, the granule cell layer (GCL), molecular layer (ML), whole hippocampus, the left CA2/3, and right presubiclum and subiculum. Patients with BD had significantly reduced volumes in the right CA1, GCL, and the whole hippocampus as compared to HCs. No significant volume differences were observed between the MDD and BD groups. Illness duration was negatively correlated with volumes of the left CA1, CA4, ML, presubiculum, subiculum, and the whole hippocampus in patients with BD.
Conclusion:
We observed hippocampal subfield volume reductions in both MDD and BD, a finding which more prominent in MDD. The inverse correlation between BD illness duration and hippocampal subfield volume may evidence the neuroprogressive nature of BD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.