We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give an algorithmic generalisation of Dickson’s method of classifying permutation polynomials (PPs) of a given degree $d$ over finite fields. Dickson’s idea is to formulate from Hermite’s criterion several polynomial equations satisfied by the coefficients of an arbitrary PP of degree $d$. Previous classifications of PPs of degree at most 6 were essentially deduced from manual analysis of these polynomial equations, but this approach is no longer viable for $d>6$. Our idea is to calculate some radicals of ideals generated by the polynomials, implemented by a computer algebra system. Our algorithms running in SageMath 8.6 on a personal computer work very fast to determine all PPs of degree 8 over an arbitrary finite field of odd order $q>8$. Such PPs exist if and only if $q\in \{11,13,19,23,27,29,31\}$ and are explicitly listed in normalised form.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.