Precise Point Positioning (PPP) performance is improving under the ongoing Global Positioning System (GPS) modernisation program. The availability of the third frequency, L5, enables triple-frequency combinations. However, to utilise the modernised L5 signal along with the existing GPS signals, P1-C5 differential code bias must be determined. In this paper, the global network of Multi-Global Navigation Satellite System Experiment (MGEX) stations was used to estimate P1-C5 satellites differential code biases $(DCB_{P1 - C5}^S )$. Mathematical background for triple-frequency linear combinations was provided along with the resultant noise and ionosphere amplification factors. Nine triple-frequency linear combinations were chosen, based on different criteria, for processing the modernised L5 signal along with the legacy GPS signals. Finally, test results using real GPS data from ten MGEX stations were provided showing the benefits of the availability of the third frequency on PPP solution convergence time and the precision of the estimated parameters. It was shown that triple-frequency combinations could improve the PPP convergence time and the precision of the estimated parameters by about 10%. These results are considered promising for using the modernised GPS signals for precise positioning applications especially when the fully modernised GPS constellation is available.